If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+42x+12=0
a = 1; b = 42; c = +12;
Δ = b2-4ac
Δ = 422-4·1·12
Δ = 1716
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1716}=\sqrt{4*429}=\sqrt{4}*\sqrt{429}=2\sqrt{429}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-2\sqrt{429}}{2*1}=\frac{-42-2\sqrt{429}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+2\sqrt{429}}{2*1}=\frac{-42+2\sqrt{429}}{2} $
| 14x+10=2x+34 | | 11x+25=360 | | 2.88+-3g=0.78 | | 4x-5=20+2x | | 100/x=200 | | 100/x=103 | | 65+-2x=61 | | 6a-1=67 | | 8+a=37.50 | | 3x-7x=2/3 | | 100*x=200 | | 4/y=84 | | x/100=103 | | 5x-60=75+0.5x | | 2x+7-3x+3=-7x+5+10+x | | 2(x+1)=3x-98 | | 3x+10=2x+1260 | | -2x+3=x-17+2x | | 3y=189 | | x/2+59+x/4+x=360 | | x^2-144x+320=0 | | X+x(0.05)=22 | | 5x5+31x4+36x3+36x2+31x+5=0 | | 3y-1=7y-1 | | 18t+4t=5t | | 6^x-2^x=208 | | 5(2n-3)=7(2n-5)8 | | 9*2x-4)=36 | | (5x+2)+2+2x+(4x-9)=180 | | n(n=1)/2=45 | | 2p^2-12p-1=31 | | -29=(5*a)-9 |